
Hotdog Or Not

Mostafa Atmar, Patrick Cockril, Riley Russell

May 9, 2023

https://github.com/riley76865/cs482-final-project

Motivation

Based on the famous skit from the HBO comedy series Silicon Valley where a gag
app was used to classify objects as either being a hot dog or not a hot dog, we
took this approach into our own hands and attempted to create a binary classifier
that would emulate this and then compared it to the results of an another already
built high-efficency classifier that made extensive use of machine learning libraries.
Those who have watched the series may get a kick out of this, but to those whom
the novelty falls short, this is an excellent way of demonstrating SIFT1, a widely-
used and robust feature extraction algorithm as well as experience in working with
Bag of Visual Words (BoVW)2, which is a popular approach for representing im-
ages in a fixed-size feature vector by creating a visual vocabulary. In addition to
the sources above, some more examples of these same technologies being applied
to image classification can be found here3, here4, and here5.

Theory, Metric Definition, and Background Information

Within our codebase, there are a few classifers that are involved. The first of which
(bovw svc.ipynb) we built ourselves with minor guidance from the professor’s lec-
tures. We used support vector machines (SVM) as our method of performing im-
age classification based on the Bag of Visual Words model. SIFT (Scale-Invariant
Feature Transform) is an algorithm used to detect and describe local features in

5https://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
5https://openaccess.thecvf.com/content/CVPR2021/papers/Gidaris_OBoW_Online_

Bag-of-Visual-Words_Generation_for_Self-Supervised_Learning_CVPR_2021_paper.pdf
5https://tinyurl.com/2rsm4c5u
5https://www.researchgate.net/profile/Jasmin-Velagic/publication/

321412919_Aerial_image_mosaicing_approach_based_on_feature_matching/links/

6167fd813851f9599400d03a/Aerial-image-mosaicing-approach-based-on-feature-matching.

pdf
5https://www.researchgate.net/profile/Aini-Hussain/publication/229051043_

Feature_Extraction_Technique_Using_SIFT_Keypoint_Descriptors/links/

55e0874d08aede0b572e7404/Feature-Extraction-Technique-Using-SIFT-Keypoint-Descriptors.

pdf

1

https://github.com/riley76865/cs482-final-project
https://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Gidaris_OBoW_Online_Bag-of-Visual-Words_Generation_for_Self-Supervised_Learning_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Gidaris_OBoW_Online_Bag-of-Visual-Words_Generation_for_Self-Supervised_Learning_CVPR_2021_paper.pdf
https://tinyurl.com/2rsm4c5u
https://www.researchgate.net/profile/Jasmin-Velagic/publication/321412919_Aerial_image_mosaicing_approach_based_on_feature_matching/links/6167fd813851f9599400d03a/Aerial-image-mosaicing-approach-based-on-feature-matching.pdf
https://www.researchgate.net/profile/Jasmin-Velagic/publication/321412919_Aerial_image_mosaicing_approach_based_on_feature_matching/links/6167fd813851f9599400d03a/Aerial-image-mosaicing-approach-based-on-feature-matching.pdf
https://www.researchgate.net/profile/Jasmin-Velagic/publication/321412919_Aerial_image_mosaicing_approach_based_on_feature_matching/links/6167fd813851f9599400d03a/Aerial-image-mosaicing-approach-based-on-feature-matching.pdf
https://www.researchgate.net/profile/Jasmin-Velagic/publication/321412919_Aerial_image_mosaicing_approach_based_on_feature_matching/links/6167fd813851f9599400d03a/Aerial-image-mosaicing-approach-based-on-feature-matching.pdf
https://www.researchgate.net/profile/Aini-Hussain/publication/229051043_Feature_Extraction_Technique_Using_SIFT_Keypoint_Descriptors/links/55e0874d08aede0b572e7404/Feature-Extraction-Technique-Using-SIFT-Keypoint-Descriptors.pdf
https://www.researchgate.net/profile/Aini-Hussain/publication/229051043_Feature_Extraction_Technique_Using_SIFT_Keypoint_Descriptors/links/55e0874d08aede0b572e7404/Feature-Extraction-Technique-Using-SIFT-Keypoint-Descriptors.pdf
https://www.researchgate.net/profile/Aini-Hussain/publication/229051043_Feature_Extraction_Technique_Using_SIFT_Keypoint_Descriptors/links/55e0874d08aede0b572e7404/Feature-Extraction-Technique-Using-SIFT-Keypoint-Descriptors.pdf
https://www.researchgate.net/profile/Aini-Hussain/publication/229051043_Feature_Extraction_Technique_Using_SIFT_Keypoint_Descriptors/links/55e0874d08aede0b572e7404/Feature-Extraction-Technique-Using-SIFT-Keypoint-Descriptors.pdf


Figure 1: SVC

images, in this case, what makes a hotdog a ...hotdog. Finally, we used K-Nearest
Neighbors (KNN) in the form of K-Means clustering to build a visual vocabulary.

The metric that will be used to determine the classification is accuracy via
Support Vector Classifier (SVC). Accuracy is the ratio of the number of correct
predictions to the total number of predictions. The equation for accuracy is as
follows:

Accuracy = (Number of correct predictions) / (Total number of predictions)

In Figure 1, we see an example of a SVM trained with samples from two classes.
The hyperplane splits them down the middle, with samples on either side of the
margin being the support vectors. This mirrors our approach since we are using a
binary classifier to filter the images.
We obtained our image dataset, which consists of 4000 hotdogs and other objects
from Kaggle6, and the dataset actually had this exact goal of identifying hotdogs
as we did referencing the show.

Approach, Implementation, and Results

To take out the complexity of the tutorial, we will present the code in pseudocode,
so it can be done in any language as well as being easier to read. The full python
code can be found in the GitHub link at the top under bovw svc.ipynb

Before we begin, you will have to install several libraries, namely numpy, opencv-python,and
scikit-learn. We figured these are one of the best general-use libraries for ma-
chine learning.

1. Install the required libraries and import them into your code. Here’s a simple

6https://www.kaggle.com/datasets/thedatasith/hotdog-nothotdog

2

https://www.kaggle.com/datasets/thedatasith/hotdog-nothotdog


command that can do that:
pip install numpy opencv-python scikit-learn

2. Load the dataset and extract SIFT features: This step defines two functions:
a. load images labels(image paths, categories): This function takes
in a dictionary of image paths organized by category and loads the images
into memory. It also assigns labels to the images based on their category.
b. extract sift features(images): This function takes in the loaded
images and uses the SIFT library to extract patches from them. It returns
the keypoints and descriptors for all images.

3. Build a visual vocabulary using KMeans: The build vocab(descriptors,

k) function takes in the SIFT descriptors and the desired number of clus-
ters k (You will want to make this a lot smaller than 100). It applies the
KMeans clustering algorithm to create the visual vocabulary by grouping
similar features together.

4. Extract Bag of Words features: The extract bovw features(images, keypoints,

visual vocabulary) function computes the Bag of Words representation for
each image. It takes in the images, their keypoints, and the visual vocabulary
generated in the previous step. For each image, it calculates the histogram
of visual words, which serves as the Bag of Words feature representation.

5. Train and evaluate an SVM classifier: The train(bow features, labels)

function takes in the Bag of Words features and their corresponding labels. It
splits the dataset into training and testing subsets, scales the features using
StandardScaler, and trains an SVM classifier with a linear kernel. After
training, it evaluates the classifier on the test set and computes the accuracy.

3



6. Finally we load the images and their labels, extracts SIFT features, and
creates the visual vocabulary using KMeans clustering. Then, it computes
the Bag of Words features for each image and trains an SVM classifier using
those features. Finally, it evaluates the classifier’s performance and prints
the accuracy. I have shown this part in Python so it is more clear what is
being executed.

Once you have implemented the above code and run it, you should recieve a very
simple output.

Accuracy: 49.35%

Now, we can compare this to the classifier that we found online (bovw knn.ipynb)7.
This code uses an alternate classifier via KNN, and makes use of various libraries
such as CV2, matplotlib, etc and was purposely built to classify images. Run-
ning it will show a very impressive figure:

As you can see, this classifier is near perfect! Though our efforts aren’t too off, we
can correctly classify a hotdog about half the time.

The creator of that classifier even wrote a plot chart that tracks clusters given
a k value:

7https://medium.com/@aybukeyalcinerr/bag-of-visual-words-bovw-db9500331b2f

4

https://medium.com/@aybukeyalcinerr/bag-of-visual-words-bovw-db9500331b2f


k=12

k=6

The top chart shows when we build the BoW with a k of 12. It clusters towards

5



Figure 2: An example of our bounds detecting a hot dog

the bottom left, so perhaps give our dataset, many of the images have a hotdog
(or another object) facing diagonally away from that corner. However, running
with a lower k value does not have this same result curiously.

Clarity, Figures, and Completeness of Tutorial

From what we can discern from this experiment, we can build a classifier from
the ground up and achieve a 50% identification rate. There’s certainly room for
improvement, but we figured that our simple collection of libraries were the main
bottleneck in performance. The performance could potentially be improved by em-
ploying more advanced image processing techniques and feature extraction meth-
ods available in libraries such as OpenCV (which we already used for SIFT) and
deep learning frameworks like TensorFlow. Leveraging deep learning models such
as Convolutional Neural Networks (CNNs) for feature extraction or even end-to-
end image classification could yield better results.

6


